
October 7th 2020 — Quantstamp Verified

StakeHound
This smart contract audit was prepared by Quantstamp, the protocol for securing smart contracts.

Executive Summary

Type Token contract

Auditors Fayçal Lalidji, Security Auditor
Kevin Feng, Blockchain Researcher
Luís Fernando Schultz Xavier da Silveira, Security
Consultant

Timeline 2020-09-30 through 2020-10-02

EVM Muir Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification litepaper

Documentation Quality Medium

Test Quality Medium

Source Code
Repository Commit

stakehound-core 0f1d6e4

Goals Can an attacker steal users' funds?•

Is there any rounding or truncation errors?•

Total Issues 8 (4 Resolved)

High Risk Issues 0 (0 Resolved)

Medium Risk Issues 0 (0 Resolved)

Low Risk Issues 3 (1 Resolved)

Informational Risk Issues 5 (3 Resolved)

Undetermined Risk Issues 0 (0 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to catastrophic
impact for client’s reputation or serious
financial implications for client and
users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice (e.g.,
gas analysis, deployment settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://stakehound.com/docs/litepaper/
https://github.com/stakehound/stakehound-core.git
https://github.com/stakehound/stakehound-core/commit/0f1d6e4d35b841bcf09d3b66f62c62bebb67308a

Summary of Findings

StakeHound is token contract and a staking algorithm and as any ERC20 token, it is vulnerable to allowance double-spend exploit. The staking reward mechanism contain some medium
flaws that can be addressed.

ID Description Severity Status

QSP-1 Token Distribution Low Acknowledged

QSP-2 Gas Consumption Low Acknowledged

QSP-3 Execute Transactions Low Fixed

QSP-4 Unlocked Pragma Informational Fixed

QSP-5 Allowance Double-Spend Exploit Informational Mitigated

QSP-6 DownstreamCaller Update Informational Acknowledged

QSP-7 Privileged Roles and Ownership Informational Acknowledged

QSP-8 Token Burning Informational Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.6.6• Slither

v0.2.7• Mythril

https://github.com/crytic/slither
https://github.com/ConsenSys/mythril

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: sslither .

3. Installed the Mythril tool from Pypi: pip3 install mythril

4. Ran the Mythril tool on each contract: myth -x path/to/contract

Findings

QSP-1 Token Distribution

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: StakedToken

The requirement that restricts the from minting more than is implicit (function will throw inside).Description: supplyController _maxSupply SafeMath StakedToken.mint
However, alter value, therefore cancelling the initial state , this will allow the

to mint more tokens than or in the opposite case (contracted supply) restrict the total supply from reaching .
distributeTokens _sharesPerToken _sharesPerToken = MAX_UINT256.div(maxSupply_)

supplyController _maxSupply _maxSupply

Consider removing the supply contraction mechanism and adding a requirement in and functions to check if the or
is lower than .

Recommendation: mint distributeTokens _totalSupply + amount
totalSupply + supplyChange _maxSupply

QSP-2 Gas Consumption

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: DownstreamCaller, StakedToken

Depending on array length, the gas consumed during a call to can be excessively high potentially throwing the
transaction for out of gas or block gas limit. Since is used by function, a bad management of the transactions array can lead to
a temporary denial of service for the token distribution logic.

Description: DownstreamCaller.transactions executeTransactions
executeTransactions StakedToken.distributeTokens

Even if the elements in array can be selectively deleted or disabled, Quantstamp recommend to run a gas consumption simulation before adding
transactions to the contract.
Recommendation: transactions

DownstreamCaller

QSP-3 Execute Transactions

Severity: Low Risk

FixedStatus:

File(s) affected: DownstreamCaller

is a public function. Depending on the listed transactions, allowing it to be called by a non-owner or by any other address than
can be a risk. No specifications were provided to correctly estimate the impact of this issue.

Description: DownstreamCaller.executeTransactions
StakedToken

Only allow to be called by contract address.Recommendation: DownstreamCaller.executeTransactions StakedToken

QSP-4 Unlocked Pragma

Severity: Informational

FixedStatus:

File(s) affected: DownstreamCaller, StakedToken

Every Solidity file specifies in the header a version number of the format . The caret () before the version number implies an unlocked pragma,
meaning that the compiler will use the specified version , hence the term "unlocked."
Description: pragma solidity (^)0.6.* ^

and above

For consistency and to prevent unexpected behavior in the future, it is recommended to remove the caret to lock the file onto a specific Solidity version.Exploit Scenario:

QSP-5 Allowance Double-Spend Exploit

Severity: Informational

MitigatedStatus:

File(s) affected: StakedToken

As it presently is constructed, the contract is vulnerable to the , as with other ERC20 tokens. An example of an exploit goes as follows:Description: allowance double-spend exploit

1. Alice allows Bob to transfer amount of Alice's tokens () by calling the method on smart contract (passing Bob's address and as method
arguments)

N N>0 approve() Token N

2. After some time, Alice decides to change from to () the number of Alice's tokens Bob is allowed to transfer, so she calls the method again, this time
passing Bob's address and as method arguments

N M M>0 approve()
M

3. Bob notices Alice's second transaction before it was mined and quickly sends another transaction that calls the method to transfer Alice's tokens
somewhere

transferFrom() N

4. If Bob's transaction will be executed before Alice's transaction, then Bob will successfully transfer Alice's tokens and will gain an ability to transfer another tokensN M

5. Before Alice notices any irregularities, Bob calls method again, this time to transfer Alice's tokens. The exploit (as described above) is mitigated
through use of functions that increase/decrease the allowance relative to its current value, such as and .

transferFrom() M
increaseAllowance decreaseAllowance

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/b4f87bb8fc25fb07f73099701e39e167a3d36465/contracts/token/ERC20/ERC20.sol#L71-L78

Pending community agreement on an ERC standard that would protect against this exploit, we recommend that developers of applications dependent on /
should keep in mind that they have to set allowance to 0 first and verify if it was used before setting the new value. Teams who decide to wait for such a standard should

make these recommendations to app developers who work with their token contract.

Recommendation: approve()
transferFrom()

QSP-6 DownstreamCaller Update

Severity: Informational

AcknowledgedStatus:

File(s) affected: StakedToken

is deployed when is initialized. However, the contract can be modified by the owner using , this does not guarantee
that the already listed transactions will be migrated to the new contract.
Description: DownstreamCaller StakedToken setDownstreamCaller

Depending on the importance of the listed transactions, the migration process can be implemented automatically to avoid any possible issue.Recommendation:

QSP-7 Privileged Roles and Ownership

Severity: Informational

AcknowledgedStatus:

File(s) affected: StakedToken

- and can be paused by the owner.Description: transfer transferFrom

Users can be denied access by the owner to , , , , and , the blacklisting is selective
and can be applied to any address.

• transfer transferFrom approve increaseAllowance decreaseAllowance mint

function allows the Supply controller can change the supply of token arbitrarily without using• mint distributeTokens

The privileged roles need to be made clear to the users, especially depending on the level of privilege the contract allows to the owner.Recommendation:

QSP-8 Token Burning

Severity: Informational

FixedStatus:

File(s) affected: StakedToken

Only the supply controller is allowed to burn tokens through , however, is used to set the from where the tokens are burned. We cannot
determine if this is an error or part of the design, the code documentation does not specify the addresses allowed to use the described functionality.
Description: StakedToken.burn msg.sender account

We recommend to clearly specify the intended behavior or modify the function implementation to meet the specification.Recommendation:

Automated Analyses

Slither

StakedToken.initialize(string,string,uint8,uint256,uint256) performs a multiplication on the result of a division, this issue is classified as false positive since it is an
intended behavior.

•

Mythril

Mythril reported several issues, however, after the manual review all issues were classified as false positive.

Adherence to Specification

The developer code documentation of ‘distributeTokens’ is incorrect as the function can both increase or decrease the supply of tokens if parameter is
falsed.

• positive

Adherence to Best Practices

Implement input validation in , should be different than and length should be higher than
zero.

• DownstreamCaller.addTransaction destination address(0x0) data

To manage an added transaction in contract the transaction index is used. However, does not return the index or emit an event
that allows to read the transaction index. Either use the index as a return value or implement an event to keep track of the pair.

• DownstreamCaller addTransaction
{Transaction, index}

, and functions allow the address to be . In
this case the allocation can not be spent since it is allowed to . However, the functions should throw with a correct error message to inform the user
about the input error.

• StakedToken.approve StakedToken.increaseAllowance StakedToken.decreaseAllowance spender address(0x0)
address(0x0)

input in function is not checked to be different than .• account StakedToken.mint address(0x0)

input in is not checked to be different than .• supplyController_ StakedToken.setSupplyController address(0x0)

Test Results

Test Suite Results

StakedToken
Initialization

✓ should be set up properly (226ms)
✓ should reject ETH transfers

Upgrades
✓ should be upgradeable (878ms)

setSupplyController
✓ should update supply controller (263ms)
✓ should not be callable by others (38ms)

setName
✓ should update name (254ms)
✓ should not be callable by others (40ms)

setSymbol
✓ should update symbol (233ms)
✓ should not be callable by others (45ms)

Transfers
✓ should transfer tokens (183ms)
✓ should fail to transfer too many tokens (84ms)

Minting
✓ should mint new tokens (130ms)
✓ should not be callable by others (39ms)

Burning
✓ should burn tokens (111ms)
✓ should fail to burn more than in account
✓ should not be callable by others (47ms)

Reward distribution
✓ should distribute rewards (235ms)
✓ should contract the supply (231ms)

Increased supply by 1 to 1000000000000000000001, actually increased by 1
Doubling supply 0
Increased supply by 1 to 2000000000000000000003, actually increased by 1
Doubling supply 1
Increased supply by 1 to 4000000000000000000007, actually increased by 1
Doubling supply 2
Increased supply by 1 to 8000000000000000000015, actually increased by 1
Doubling supply 3
Increased supply by 1 to 16000000000000000000031, actually increased by 1
Doubling supply 4
Increased supply by 1 to 32000000000000000000063, actually increased by 1
Doubling supply 5
Increased supply by 1 to 64000000000000000000127, actually increased by 1
Doubling supply 6
Increased supply by 1 to 128000000000000000000255, actually increased by 1
Doubling supply 7
Increased supply by 1 to 256000000000000000000511, actually increased by 1
Doubling supply 8
Increased supply by 1 to 512000000000000000001023, actually increased by 1
Doubling supply 9
Increased supply by 1 to 1024000000000000000002047, actually increased by 1
Doubling supply 10
Increased supply by 1 to 2048000000000000000004095, actually increased by 1
Doubling supply 11
Increased supply by 1 to 4096000000000000000008191, actually increased by 1
Doubling supply 12
Increased supply by 1 to 8192000000000000000016383, actually increased by 1
Doubling supply 13
Increased supply by 1 to 16384000000000000000032767, actually increased by 1
Doubling supply 14
Increased supply by 1 to 32768000000000000000065535, actually increased by 1
Doubling supply 15
Increased supply by 1 to 65536000000000000000131071, actually increased by 1
Doubling supply 16
Increased supply by 1 to 131072000000000000000262143, actually increased by 1
Doubling supply 17
Increased supply by 1 to 262144000000000000000524287, actually increased by 1
Doubling supply 18
Increased supply by 1 to 524288000000000000001048575, actually increased by 1
Doubling supply 19

✓ should maintain supply precision for 20 doublings (4211ms)
✓ should not be callable by others

Allowances
✓ should transfer if allowance is big enough (241ms)
✓ should fail to transfer if the allowance is too small (127ms)

External calls
✓ should register a downstream contract and call it on distribution (239ms)
✓ should remove a downstream transaction (318ms)
✓ should disable a downstream transaction (309ms)
✓ should change the downstream caller contract (592ms)
✓ should not be callable by others (38ms)

Pausable
✓ should fail token transfers when paused (85ms)
✓ should fail to transferFrom when paused (206ms)
✓ should unpause (361ms)
✓ should not be callable by others (62ms)

Blacklisting
✓ should fail token transfers when sender is blacklisted (77ms)
✓ should fail token transfers when recipient is blacklisted (80ms)
✓ should fail to transferFrom when sender is blacklisted (197ms)
✓ should fail to transferFrom when recipient is blacklisted (196ms)
✓ should fail to set allowance when sender is blacklisted (91ms)
✓ should fail to increase allowance when sender is blacklisted (92ms)
✓ should fail to decrease allowance when sender is blacklisted (87ms)
✓ should fail to set allowance when spender is blacklisted (85ms)
✓ should fail to increase allowance when spender is blacklisted (91ms)
✓ should fail to decrease allowance when spender is blacklisted (85ms)
✓ should disable blacklist (442ms)
✓ should not be callable by others

43 passing (27s)

Code Coverage

File % Stmts % Branch % Funcs % Lines

contracts/ 86.61 72.73 91.89 86.96

DownstreamCaller.sol 82.35 60 100 83.33

StakedToken.sol 87.37 76.47 90.32 87.63

All files 86.61 72.73 91.89 86.96

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

c773287965ad4e612efdc08b6cbe17973aa23b81ed3255557a71dfa4a12d64b2 ./contracts/DownstreamCaller.sol

8ff22272f3f9466ed336e827ae69829bed8cea0093921db8a21a71caaa5d80f0 ./contracts/StakedToken.sol

Tests

909107da61056e680cf842c916dcf9e89d2a8d229c7938cc33c7131de1c2814c ./test/StakedToken.behavior.ts

7a015ec4eef320407aa5bfc2326d26ac8ccf7802b818fb43e1d7dbdb6ceaf322 ./test/StakedToken.ts

Changelog

2020-10-02 - Initial report•

2020-10-07 - re-audit and report update•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the
adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,
and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract
security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment
services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum Community
Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our
commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;
however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes
no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.
These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the
content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as
described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or
operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.
Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any
associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that
could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the
reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim
all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the
implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any
product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of
products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise
caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

StakeHound Audit

